436 research outputs found

    Fractal properties of relaxation clusters and phase transition in a stochastic sandpile automaton

    Full text link
    We study numerically the spatial properties of relaxation clusters in a two dimensional sandpile automaton with dynamic rules depending stochastically on a parameter p, which models the effects of static friction. In the limiting cases p=1 and p=0 the model reduces to the critical height model and critical slope model, respectively. At p=p_c, a continuous phase transition occurs to the state characterized by a nonzero average slope. Our analysis reveals that the loss of finite average slope at the transition is accompanied by the loss of fractal properties of the relaxation clusters.Comment: 11 page

    Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes

    Get PDF
    ABSTRACT: BACKGROUND: Genome-wide transcript profiling and analyses of enzyme activities from central carbon and nitrogen metabolism has shown that transcript levels undergo marked and rapid changes during diurnal cycles and after transfer to darkness, whereas changes of enzyme activities are smaller and delayed. In the starchless pgm mutant, where sugars are depleted every night, there are accentuated diurnal changes of transcript levels. Enzyme activities do not show larger diurnal changes; instead they shift towards the levels found in wild-type after several days of darkness. These results indicate that enzyme activities change slowly, integrating the changes of transcript levels over several diurnal cycles. RESULTS: To generalize this conclusion, 137 metabolites were profiled using GC-MS and LC-MS. Amplitudes of the diurnal changes of metabolites in pgm were (with the exception of sugars) similar or smaller than in wild-type. The average levels shifted towards those found after several days of darkness in wild-type. Examples include increased levels of many amino acids due to protein degradation, decreased levels of many fatty acids, increased tocopherol and decreased myo-inositol. Many metabolite-transcript correlations were found and the proportion of transcripts correlated with sugars increased dramatically in the starchless pgm mutant. CONCLUSION: Rapid diurnal changes of transcripts are integrated over time to generate quasi-stable changes across large sectors of metabolism. The slow response of enzyme activities and metabolites implies that correlations between metabolites and transcripts are due to regulation of gene expression by metabolites, rather than metabolites being changed as a consequence of a change in gene expression

    Field Theory of Mesoscopic Fluctuations in Superconductor/Normal-Metal Systems

    Full text link
    Thermodynamic and transport properties of normal disordered conductors are strongly influenced by the proximity of a superconductor. A cooperation between mesoscopic coherence and Andreev scattering of particles from the superconductor generates new types of interference phenomena. We introduce a field theoretic approach capable of exploring both averaged properties and mesoscopic fluctuations of superconductor/normal-metal systems. As an example the method is applied to the study of the level statistics of a SNS-junction.Comment: 4 pages, REVTEX, two eps-figures included; submitted to JETP letter

    Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes

    Get PDF
    The balance between the supply and utilization of carbon (C) changes continually. It has been proposed that plants respond in an acclimatory manner, modifying C utilization to minimize harmful periods of C depletion. This hypothesis predicts that signaling events are initiated by small changes in C status. We analyzed the global transcriptional response to a gradual depletion of C during the night and an extension of the night, where C becomes severely limiting from 4 h onward. The response was interpreted using published datasets for sugar, light, and circadian responses. Hundreds of C-responsive genes respond during the night and others very early in the extended night. Pathway analysis reveals that biosynthesis and cellular growth genes are repressed during the night and genes involved in catabolism are induced during the first hours of the extended night. The C response is amplified by an antagonistic interaction with the clock. Light signaling is attenuated during the 24-h light/dark cycle. A model was developed that uses the response of 22K genes during a circadian cycle and their responses to C and light to predict global transcriptional responses during diurnal cycles of wild-type and starchless pgm mutant plants and an extended night in wild-type plants. By identifying sets of genes that respond at different speeds and times during C depletion, our extended dataset and model aid the analysis of candidates for C signaling. This is illustrated for AKIN10 and four bZIP transcription factors, and sets of genes involved in trehalose signaling, protein turnover, and starch breakdown

    Critical behavior of a traffic flow model

    Full text link
    The Nagel-Schreckenberg traffic flow model shows a transition from a free flow regime to a jammed regime for increasing car density. The measurement of the dynamical structure factor offers the chance to observe the evolution of jams without the necessity to define a car to be jammed or not. Above the jamming transition the dynamical structure factor exhibits for a given k-value two maxima corresponding to the separation of the system into the free flow phase and jammed phase. We obtain from a finite-size scaling analysis of the smallest jam mode that approaching the transition long range correlations of the jams occur.Comment: 5 pages, 7 figures, accepted for publication in Physical Review

    Reorientation transition of ultrathin ferromagnetic films

    Full text link
    We demonstrate that the reorientation transition from out-of-plane to in-plane magnetization with decreasing temperature as observed experimentally in Ni-films on Cu(001) can be explained on a microscopic basis. Using a combination of mean field theory and perturbation theory, we derive an analytic expression for the temperature dependent anisotropy. The reduced magnetization in the film surface at finite temperatures plays a crucial role for this transition as with increasing temperature the influence of the uniaxial anisotropies is reduced at the surface and is enhanced inside the film.Comment: 4 pages(RevTeX), 3 figures (EPS

    Proximity-induced superconductivity in graphene

    Full text link
    We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).Comment: 4 pages, 3 figure

    Gap Fluctuations in Inhomogeneous Superconductors

    Full text link
    Spatial fluctuations of the effective pairing interaction between electrons in a superconductor induce variations of the order parameter which in turn lead to significant changes in the density of states. In addition to an overall reduction of the quasi-particle energy gap, theory suggests that mesoscopic fluctuations of the impurity potential induce localised tail states below the mean-field gap edge. Using a field theoretic approach, we elucidate the nature of the states in the `sub-gap' region. Specifically, we show that these states are associated with replica symmetry broken instanton solutions of the mean-field equations.Comment: 11 pages, 3 figures included. To be published in PRB (Sept. 2001

    Numerical Determination of the Avalanche Exponents of the Bak-Tang-Wiesenfeld Model

    Full text link
    We consider the Bak-Tang-Wiesenfeld sandpile model on a two-dimensional square lattice of lattice sizes up to L=4096. A detailed analysis of the probability distribution of the size, area, duration and radius of the avalanches will be given. To increase the accuracy of the determination of the avalanche exponents we introduce a new method for analyzing the data which reduces the finite-size effects of the measurements. The exponents of the avalanche distributions differ slightly from previous measurements and estimates obtained from a renormalization group approach.Comment: 6 pages, 6 figure

    Anisotropy of ultra-thin ferromagnetic films and the spin reorientation transition

    Full text link
    The influence of uniaxial anisotropy and the dipole interaction on the direction of the magnetization of ultra-thin ferromagnetic films in the ground-state is studied. The ground-state energy can be expressed in terms of anisotropy constants which are calculated in detail as function of the system parameters and the film thickness. In particular non-collinear spin arrangements are taken into account. Conditions for the appearance of a spin reorientation transition are given and analytic results for the width of the canted phase and its shift in applied magnetic fields associated with this transition are derived.Comment: 6 pages, RevTeX
    • …
    corecore